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Abstract

A genera] framework for time-dependent variational approach in terms of squeezed co-

herent states is constructed with the aim of describing quanta] systems by means of classical

mechanics including higher order quanta] effects with the aid of canonicity conditions de-

veloped in the time-dependent Hartree-Fock theory. The Maslov phase occurring in a semi-

classical quantisation rule is investigated in this framework. In the limit of a semi-classica]

approximation in this approach, it is definitely shown that the Maslov phase has a geometric

nature analogous to the Berry phase. It is also indicated that this squeezed coherent state

approach is a possible way to go beyond the usual WKB approximation.

1 Introduction

In many-body problems, a great interest is paid to describe quantal systems in terms of a few

classical variables because we are especially interested in some particular characteristic motions

in quantal systems, for example, nuclear collective motions in nucleus and the dynamics of soliton

models of baryons as the low energy effective theory of QCD. As is well known, in various quantal

systems, if one takes the limit of "large N", the quantum theories are well described as the classical

ones [1]. However, since, for example, we are interested in the nuclei as finite quantum many-

particle systems, it should be noticed that the deviations from classical dynamics can never be

neglected.

With the aim of establishing a possible framework for the classical description of quantal

systems, we give a rather general framework to describe quantal systems by means of classical

mechanics including the higher order quantal effects. Our basic idea is formulated with the use of

the time-dependent variational principle utilizing the squeezed coherent states [2], paying strong

attention to canonicity conditions developed in the TDHF theory [3][4].

In this paper, first, we briefly review our time-dependent variational approach with squeezed

coherent states developed in Refs.[2] and [5]. Secondly, we show that, when we take a semi-

classical limit in our framework, it is clearly realized that the Maslov correction occurring in the

semi-classical quantization procedure in the usual WKB method can directly be interpreted as

the Berry phase [6]. Although it has originally been pointed out that the Maslov correction is a

kind of the Berry phase [7], it is possible to take account of the higher order quantum effects than

that of the semi-classical approximation in our framework. Furthermore, it is understood that our

approach is a possible way to go beyond the usual WKB approximation.
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2 Formulation

In this section, we give the framework of the time-dependent variational approach in terms of

squeezed coherent states [5][6]. We start with the general squeezed coherent state as

]_(_,/_))- exp{_(_ka_-_k'ak)}[_(/_)), (1)
k

Ig'(/5'))-- exp{ 1 _-"_(,%_Bkk,c%_,--fikBkk"_Zk')}I0).
k,k'

(2)

Here, [0) is a vacuum state with respect to boson operators _, and ok and Bhk, are the time-

dependent c-number variables. The state I_(/_)/is called the squeezed vacuum. In the following

consideration, we are restricted ourselves to deal with boson systems composed of one kind of

boson. If we want to consider the systems described by su(2)-algebra such as the Lipkin model, it

is enough to express the algebra by the use of two-kinds of boson operators, the representation of

which is well known as Schwinger boson representation. Then, Bkk, is taken as Bkk, = BkSkk,(k =

I,2)N.
With the aid of definitions of coordinate-momentum operators Q = _/_-2(a + at) and/_ =

(-i)_f2(b - _t), the above squeezed coherent state can be rewritten as the following Gaussian-

type state :

= :'I¢(_,/_)),

where we define the following variables as

q -- _+a'), p--(-i o_ - c_') ,

1

fl = 1-_--_+i2II,

1 t B 12 iB'-BG = _ cosh IBI + _ sinh IBJ , 1] - h JBI
sinh IBI cosh IBI

cosh IBI + 1_1sinh IBI[2

(4)

, (6)

B

e_,2,, _- _1 (coshlB I + _sinhlBI). (7)

Here, c-number variable f_ is divided into real and imaginary parts, and for later convenience,

the part "1" which represents the width of the wave packet of the original vacuum is extracted

from real part. In the following, we will start with this expression of the squeezed coherent state

in Eq.(3). Thus, we treat the variables q,p, G and 1I as dynamical ones. Here, note that the

variable G is positive definite and never takes zero. This fact is important in order to present an

interpretation of the usual WKB approximation within our framework.

In general, we can calculate the expectation values for arbitrary operators in terms of the

Wigner transform :

(¢(t)lOl,I,(t)) -- exp{h'D}Ow(q,p). (8)
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Here, the derivative operator _) and the Wigner transform Ow(q,p) are defined as

-= +
Ow(q,p) =- f-_oo dse"/a(q - 2 IOIq + 2 ) , (10)

where the relation Q[q) = q[q) is satisfied. The Wigner transform Ow only depends on q and p

and the variables G and II are introduced by the operation of _.

We need to determine the time-development of the variables q(t),p(t), G(t) and H(t), so that

the time-development of the state [_(t)) is determined. We can carry this out with the aidof the

time-dependent variational principle similar to the TDHF theory :

],i' dt(O(t)lihO -/_lO(t)) = 0. (11)6

Furthermore, we impose the canonicity conditions developed in the TDHF theory [4] in order to

extract canonical variables. Taking the freedom of canonical transformations into account, we can

express the canonicity conditions in the following form :

((_(t)lihOx[_(t)) = Y + Oxs(X,Y) , (_(t)lihOyl_(t)) = Dys(X,Y) , (12)

wher_ 0F - O/OF is defined and s(X, Y) which represents the freedom of the canonical transforma-

tion is an arbitrary function of canonical variables X and Y. We can take possible solutions of the

above canonicity conditions as (X, Y) = (q,p) and (liG, 1]). Therefore, the resultant equations

of motion derived from the time-dependent variational principle axe nothing but the canonical

equations of motion due to the canonicity conditions :

- OH_eaOOHw ,
ov ov

OH _eh_,OHw (13)= - a-T= 0q '
02

h(_ - '_OH _ heh_ _2G(o__)+4GH, (.._p)O2} Hw

hII OH heh_ f 1 [ 0 ,,2 0 2
-- (_p) }Hw. (14)+

Here, the dot denotes the time-derivative and the c-number Hamiltonian function H is defined

by H = ((_(t)l/tl(_(t)) = ehOHw(q,p). Thus, our main task is reduced to solving the classical

equations of motion under appropriate initial conditions in the canonical form. As is seen from

Eqs.(13) and (14), roughly speaking, the variables q and p represent the classical motion and G

and ti may be regarded as the classical images of quantum fluctuations.

3 Maslov Phase as Berry Phase

In this section, we give a relation between the usual WKB approximation and our framework of

the time-dependent variational approach with squeezed coherent states. Then, it is clearly shown
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or" dr{p4

We rewrite the above relation as

that the Maslov correction occurring in the semi-classical quantization procedure in the usual

WKB method can directly be interpreted as the Berry or geometric phase.

In our framework, it is necessary to choose the initial conditions for newly-introduced variables

as the classical image of quantum fluctuations, that is G and H. We adopt two criteria developed in

our papers [2][6], namely the requirements of "Least Quantal Effects" and "Minimal Uncertainty"

at initial time. As for the "classical parts" q(t) and p(t), we may select the initial conditions in a

similar way to the usual TDHF theory [9].

Now, if the limit of h --* 0 is taken in Eq.(13), then these equations are reduced to the usual

classical Hamilton's equations of motion. Thus, it is expected that the variables G and II represent

the quantum fluctuations around the above-mentioned classical motions• Therefore, it is realized

that the semi-classical limit in our framework is to take the limit of h --* 0 in the equations of

motion in Eqs.(13) and (14). In this limit, we can solve the equations of motion for G and H

in Eq.(14) and express these solutions in terms of the classical orbit (q(t),p(t)). The results are
obtained as follows :

G = _ 2GoA 2 + , II = -_ 2GoAC + ,

where A - Oq/Oqo, B - Oq/Opo, C -- Op/Oqo and D =- Op/Opo are defined and the variables

with subscript 0 represent the initial values. Since the variables G and II are always accompanied

with h, the expectation value of Harailtonian should also be taken into account up to the order

of h in this semi-classical limit. Namely, as the approximate energy expectation value, we adopt

H _- Hd(q,p)+hHq,(q,p,a, II).

In the usual WKB considerations, the energy is kept in the classical form which does not

include h. Therefore, in our framework of the time-dependent variational approach with the

squeezed coherent states, h f dtHql in the action integral should be combined with the requantized

phase factor f dt(¢(t)[ihO/Ot[_(t)) in order to compare our treatment with the usual WKB one

properly. Thus, action function is written as

fo T'I 0_ foTCl { 1 }S - dt(O(t)[ih - H[O(t)) = dt _(pq - [oq) - l_IIa - H

_- foT"dt{[p(t+hAB£AB]-Hdl (+totaltime-derivativeterm), (16)

where it is assumed that the classical orbit is a periodic one, the period of which is written by

Td. According to the requantization procedure similar to the TDHF theory, we set the modified

action integral except for the part of "energy" to integer n times 2_rh :

+ = 21rhn . n "integer (17)

where r is defined and is explicitly calculated with the relation G --- [zlZ/2 :

(18)

r ==_ _or"dtAB_G A_
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"-- --/1"// .
Z

u :integer (19)

The above expression is nothing but a requantization condition in the semi-classical approximation.

Here, z (G) never passes through the point of origin z = 0 (G = 0) as is previously mentioned.

Then, G or z undergoes the time-evolution accompanied with the classical motion q(t) through

the variables A and B. The integer u, which corresponds to the Maslov correction occurring in the

usual semi-classical quantization procedure in the WKB method, appears as the winding number

around the origin z = 0 associated with the classical motion. These situations are analogous to

the case encountered for the Berry phase [10][11]. Namely, it is understood that, in our squeezed

coherent state approach, the Maslov correction or the Maslov "phase" corresponds to the Berry

phase and the classical orbit plays a role of an "external parameter." The coefficient _r in the

Maslov phase r may be interpreted as a half of the solid angle that subtends at the "singular

point" G = 0 (z = 0). Furthermore, the parameter governing the approximation is h, so that h

plays a role of an "adiabatic parameter" in the consideration of the Berry phase. Therefore, it

is clearly realized in our approach that the Maslov correction has the similar geometric aspect to

the Berry phase. It is thus shown that the quantum effects are automatically contained in the

semi-classical limit in our squeezed coherent states approach.

4 Beyond the WKB Approximation

In the usual WKB method, the energy of the system is kept in the classical form which does

not include h and the quantum effects are taken into account only through the requantization

condition. On the other hand, in our time-dependent variational approach with the squeezed co-

herent states, the energy is" the expectation value of the Hamiltonian with respect to the squeezed

coherent state itself, that is H = (_(t)l/tl¢(t)), so that the higher order quantum effects of h

are already included. Thus, under the conception of our squeezed coherent states approach, the
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FIG. 1. The energies are shown in the case of Eckart potential V(Q) =

-Uo/coshgaQ, in which we set the parameters U0 = 1 and a = 0.1 for simplicity.

"This Case" represents the energy calculated numerically in our squeezed coherent

state approach. "WKB" and "Exact" represent the energies obtained by the usual

WKB approximation and exact eigenvalue of the ground state, respectively.
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energy is calculated as follows : First, we analytically or numerically solve the self-consistent

equations of motion in Eqs.(13) and (14). Secondly, we calculate the energy expectation value

of the Hamiltonian with respect to the squeezed coherent state which includes the higher order

effects of h than the quantum effects in the WKB approximation.

For example, in the case of Eckart potential, V(0) = -Uo/cosh 2 s0, the energy expectation

value calculated numerically in our framework is compared with the exact energy eigenvalue

and the usual WKB energy in Fig.1. Here, the initial conditions in our approach are taken as

q0 = P0 = 0. Therefore, the energy thus obtained corresponds to the ground state one. It can be

seen from Fig. 1 that our treatment gives a fairly good result owing to the incorporation of the

higher order effects of h.

In summary, we have given the framework of the time-dependent variational approach in terms

of the squeezed coherent states with the aim of describing quantal systems by means of the classical

dynamics. In our squeezed coherent states approach, the Maslov correction that appears in the

usual semi-classical quantization procedure is clearly realized as the Berry or geometric phase.

Furthermore, our approach is a possible way to go beyond the WKB approximation.
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